A New Travel Time Prediction Method for Intelligent Transportation Systems

نویسندگان

  • Hyunjo Lee
  • Nihad Karim Chowdhury
  • Jae-Woo Chang
چکیده

Travel time prediction is an indispensable for numerous intelligent transportation systems (ITS) including advanced traveler information systems. The main purpose of this research is to develop a dynamic travel time prediction model for road networks. In this study we proposed a new method to predict travel times using Artificial Neural Network model because artificial neural network has exhibited high accuracy and speed when applied to large databases. In addition, we compare the proposed method with such prediction methods as link-based prediction model and time varying coefficient linear regression model. It is shown from our experiment that ANN predictor can reduce mean absolute relative error significantly rather than the other predictors. We illustrate that ANN is suitable and performs well for traffic data analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Literature Review of Traffic Assignment: Static and Dynamic

Rapid urban growth is resulting into increase in travel demand and private vehicle ownership in urban areas. In the present scenario the existing infrastructure has failed to match the demand that leads to traffic congestion, vehicular pollution and accidents. With traffic congestion augmentation on the road, delay of commuters has increased and reliability of road network has decreased. Four s...

متن کامل

Improving Data Quality in Intelligent Transportation Systems

—Intelligent Transportation Systems (ITS) use data and information technology to improve the operation of our transportation network. ITS contributes to sustainable development by using technology to make the transportation system more efficient; improving our environment by reducing emissions, reducing the need for new construction and improving our daily lives through reduced congestion. A ke...

متن کامل

Prediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers Using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence

Research on vehicle longitudinal control with a stop and go system is presently one of the most important topics in the field of intelligent transportation systems. The purpose of stop and go systems is to assist drivers for repeatedly accelerate and stop their vehicles in traffic jams. This system can improve the driving comfort, safety and reduce the danger of collisions and fuel consumption....

متن کامل

Predicting the Next State of Traffic by Data Mining Classification Techniques

Traffic prediction systems can play an essential role in intelligent transportation systems (ITS). Prediction and patterns comprehensibility of traffic characteristic parameters such as average speed, flow, and travel time could be beneficiary both in advanced traveler information systems (ATIS) and in ITS traffic control systems. However, due to their complex nonlinear patterns, these systems ...

متن کامل

Developing a Model of Heterogeneity in Driver’s Behavior

Intelligent Driver Model (IDM) is a well-known microscopic model of traffic flow within the traffic engineering societies. While it is a powerful technique for modeling traffic flows, the Intelligent Driver Model lacks the potential of accommodating the notion of drivers’ heterogeneous behavior whenever they are on roads. Concerning the above mentioned, this paper takes the lane to recognize th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008